
Computer Graphics using OpenGL, 

3rd Edition

F. S. Hill, Jr. and S. Kelley

Chapter 4.1-4

Vector Tools for Graphics

S. M. Lea

University of North Carolina at Greensboro

© 2007, Prentice Hall



Introduction

• In computer graphics, we work with objects 
defined in a three dimensional world (with 2D 
objects and worlds being just special cases). 

• All objects to be drawn, and the cameras used to 
draw them, have shape, position, and 
orientation. 

• We must write computer programs that 
somehow describe these objects, and describe 
how light bounces around illuminating them, so 
that the final pixel values on the display can be 
computed. 



Introduction (2)

• The two fundamental sets of tools that come to 

our aid in graphics are vector analysis (Ch. 4) 

and transformations (Ch. 5). 

• We develop methods to describe various 

geometric objects, and we learn how to convert 

geometric ideas to numbers. 

• This provides a collection of crucial algorithms 

that we can use in graphics programs. 



Easy Problems for Vectors

• Where is the center of the circle through the 3 
points?  What image shape appears on the 
viewplane, and where?  Where does the 
reflection of the cube appear on the shiny cone, 
and what is the exact shape of the reflection?



Vectors

• Vectors provide easy ways of solving 

some tough problems.

• A vector has length and direction, but not 

position (relative to a coordinate system).  

It can be moved anywhere.

• A point has position but not length and 

direction (relative to a coordinate system).

• A scalar has only size (a number).



Basics of Points and Vectors

• All points and vectors are defined relative to 

some coordinate system. Shown below are a 2D 

coordinate system and a right- and a left-handed 

3-D coordinate system.



Left and Right Handedness

• In a 3D system, using your right hand, curl 

your fingers around going from the x-axis 

to the y-axis. Your thumb is at right angles 

to your fingers.

– If your thumb points along the direction of the 

z-axis, the system is right handed.

– If your thumb points opposite to the direction 

of the z-axis, the system is left handed.



4.2: Review of Vectors

• Vectors are drawn as arrows of a certain length pointing 

in a certain direction.

• A vector is a displacement from one point to another. 

Shown below are displacements of the stars in the Big 

Dipper over the next 50,000 years.



Vectors and Coordinate Systems

• A vector v between points P = (1, 3) and Q = (4, 1), with 
components of (3, -2), calculated by subtracting the 
coordinates individually (Q – P). 

• To "go" from P to Q, we move down by 2 and right by 3.  
Since v has no position, the two arrows labeled v are the 
same vector. The 3D case is also shown.



Vector Operations

• The difference between 2 points is a 

vector: v = Q – P.

• The sum of a point and a vector is a point: 

P + v = Q.

• We represent an n-dimensional vector by 

an n-tuple of its components, e.g. v = (vx, 

vy, vz).  (We will usually use 2- or 3-

dimensional vectors: e.g., v = (3, -2)).



Vector Representations

• A vector v = (33, 142.7, 89.1) is a row 

vector.

• A vector v = (33, 142.7, 89.1)T is a column 

vector.

– It is the same as 
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Vector Operations (2)

• Vectors have 2 
fundamental 
operations: addition

of 2 vectors and 
multiplication by a 
scalar.

• If a and b are 
vectors, so is a + b, 
and so is sa, where 
s is a scalar.



Vector Operations (3)

• Subtracting c from a is equivalent to adding a

and (-c), where –c = (-1)c.



Linear Combinations of Vectors

• v1 ± v2 = (v1x ± v2x, v1y ± v2y, v1z ± v2z)

• sv = (svx, svy, svz)

• A linear combination of the m vectors v1, 

v2, …, vm is w = a1v1 + a2v2 + … + amvm.

– Example: 2(3, 4,-1) + 6(-1, 0, 2) forms the 

vector (0, 8, 10). 



Linear Combinations of Vectors

• The linear combination becomes an affine 

combination if a1 + a2 + … + am = 1.

– Example: 3a + 2 b - 4 c is an affine combination of 

a, b, and c, but 3 a +  b - 4 c is not. 

– (1-t) a + (t) b is an affine combination of a and b.

• The affine combination becomes a convex 

combination if ai ≥ 0 for 1 ≤ i ≤ m.

– Example: .3a+.7b is a convex combination of a and b, 

but 1.8a -.8b is not. 



The Set of All Convex 

Combinations of 2 or 3 Vectors

• v = (1 – a)v1 + av2, as a varies from 0 to 1, gives 

the set of all convex combinations of v1 and v2.  

An example is shown below. 



Vector Magnitude and Unit Vectors

• The magnitude (length, size) of n-vector w is 
written |w|.

• Example: the magnitude of w = (4, -2) is   

and that of w = (1, -3, 2) is       .  

• A unit vector has magnitude |v| = 1.

• The unit vector pointing in the same direction as 
vector a is              (if |a| ≠0).

• Converting a to       is called normalizing vector 
a.
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Vector Magnitude and Unit Vectors 

(2)

• At times we refer to a unit vector as a 

direction. 

• Any vector can be written as its magnitude 

times its direction: a = |a| â



Vector Dot Product

• The dot product of n-vectors v and w is 

v∙w = v1w1 + v2w2 + … + vnwn

– The dot product is commutative: v∙w = w∙v

– The dot product is distributive: (a ± b)∙c = a∙c 

± b∙c

– The dot product is associative over 

multiplication by a scalar: (sa)∙b = s(a∙b)

– The dot product of a vector with itself is its 

magnitude squared: b∙b = |b|2



Applications: Angle Between 2 

Vectors

• b = (|b| cos φb, |b| sin 

φb), and c = (|c| cos φc, 

|c| sin φc)

• b∙c = |b||c| cos φc cos 

φb + |b||c| sin φb sin φc

= |b||c| cos (φc- φb) = 

|b||c| cos θ, where θ = 

φc- φb is the smaller 

angle between b and c:

cos( )  ˆ b  ˆ c 



Angle Between 2 Vectors (2)

• The cosine is positive if |θ| < 90o, zero if |θ| = 

90o, and negative if θ > 90o.  

• Vectors b and c are perpendicular (orthogonal, 

normal) if b∙c = 0.



Standard Unit Vectors

• The standard unit vectors in 3D are i = (1,0,0), j
= (0, 1, 0), and k = (0, 0, 1). k always points in 
the positive z direction 

• In 2D, i = (1,0) and j = (0, 1).  

• The unit vectors are orthogonal.



Finding a 2D "Perp" Vector

• If vector a = (ax, ay), then the vector perpendicular to 
a in the counterclockwise sense is a┴ = (-ay, ax), and 
in the clockwise sense it is -a┴. 

• In 3D, any vector in the plane perpendicular to a is a 
"perp" vector.



Properties of ┴

• (a ± b)┴ = a┴ ± b┴; 

• (sa)┴ = s(a┴); 

• (a┴)┴ = -a

• a┴ ∙ b = -b┴ ∙ a = -aybx + axby; 

• a┴ ∙ a = a ∙ a┴ = 0;  

• |a┴| = |a|; 



Orthogonal Projections and 

Distance from a Line

• We are given 2 points A and C and a 

vector v. The following questions arise:

– How far is C from the line L that passes 

through A in direction v? 

– If we drop a perpendicular onto L from C, 

where does it hit L?

– How do we decompose a vector c = C – A into 

a part along L and a part perpendicular to L?



Illustration of Questions



Answering the Questions

• We may write c = Kv + Mv┴.  If we take 

the dot product of each side with v, we 

obtain c∙v = Kv∙v + Mv┴∙v = K|v|2 (why?), 

or K = c∙v/|v|2.

• Likewise, taking the dot product with v┴ 

gives M = c∙v┴/|v|2.  (Why not |v┴|2 ?)

• Answers to the original questions: Mv┴, 

Kv, and both.



Application of Projection: 

Reflections

• A reflection occurs when light hits a shiny 

surface (below) or when a billiard ball hits the 

wall edge of a table.  



Reflections (2)

• When light reflects from a mirror, the angle of reflection 

must equal the angle of incidence: θ1 = θ2. 

• Vectors and projections allow us to compute the new 

direction r, in either two-dimensions or three dimensions.



Reflection (2)

• The illustration shows that e = a – m and r = e –

m = a – 2m and m = [(a∙n)/|n|2]n =

• r =   nnaa ˆˆ2 

 nna ˆˆ



Vector Cross Product (3D Vectors 

Only)

• a x b = (aybz – azby)i + (azbx – axbz)j + (axby

– aybx)k.

• The determinant below also gives the 

result:

a  b 

i j k

ax ay az

bx by bz



Properties of the Cross-Product

• i x j = k; j x k = i; k x i = j

• a x b = - b x a; a x (b ± c) = a x b ± a x c; 
(sa) x b = s(a x b)

• a x (b x c) ≠ (a x b) x c – for example, a = 
(ax, ay, 0), b = (bx, by, 0), c = (0, 0, cz)

• c = a x b is perpendicular to a and to b.  
The direction of c is given by a right/left 
hand rule in a right/left-handed coordinate 
system.



Properties (2)

• a ∙ (a x b) = 0

• a x b = |a||b| sin θ, where θ is the smaller 

angle between a and b. 

• a x b is also the area of the parallelogram 

formed by a and b. 

• a x b = 0 if a and b point in the same or 

opposite directions, or if one or both has 

length 0.



Geometric Interpretation of the 

Cross Product



Application: Finding the Normal to 

a Plane

• Given any 3 non-collinear points A, B, and C in a 

plane, we can find a normal to the plane:

• a = B – A, b = C – A, n = a x b.  The normal on the 

other side of the plane is –n.



Convexity of Polygons

• Traversing around a 
convex polygon from one 
edge to the next, either a 
left turn or a right turn is 
taken, and they all must be 
the same kind of turn (all 
left or all right). 

• An edge vector points 
along the edge of the 
polygon in the direction of 
travel.



Convexity of Polygons (2)

• Take the cross 

product of each edge 

vector with the next  

forward edge vector.

• If all the cross 

products point into (or 

all point out of) the 

plane, the polygon is 

convex; otherwise it is 

not.



Representations of Key Geometric 

Objects

• Lines and planes are essential to graphics, 

and we must learn how to represent them 

– i.e., how to find an equation or function 

that distinguishes points on the line or 

plane from points off the line or plane.

• It turns out that this representation is 

easiest if we represent vectors and points 

using 4 coordinates rather than 3.



Coordinate Systems and Frames

• A vector or point has coordinates in an 

underlying coordinate system.  

• In graphics, we may have multiple 

coordinate systems, with origins located 

anywhere in space.

• We define a coordinate frame as a single 

point (the origin, O) with 3 mutually 

perpendicular unit vectors: a, b, and c.





Coordinate Frames (2)

• A vector v is represented by (v1, v2, v3) such that 

v = v1a + v2b + v3c. 

• A point P – O = p1a +p2b + p3c.



Homogeneous Coordinates

• It is useful to represent both points and 

vectors by the same set of underlying 

objects, (a, b, c, O).

• A vector has no position, so we represent 

it as (a, b, c, O)(v1, v2, v3,0)T.

• A point has an origin (O), so we represent 

it by (a, b, c, O)(v1, v2, v3,1)T.



Changing to and from 

Homogeneous Coordinates

• To: if the object is a vector, add a 0 as the 4th

coordinate; if it is a point, add a 1.

• From: simply remove the 4th coordinate.

• OpenGL uses 4D homogeneous coordinates for 
all its vertices. 
– If you send it a 3-tuple in the form (x, y, z), it converts 

it immediately to (x, y, z, 1). 

– If you send it a 2D point (x, y), it first appends a 0 for 
the z-component and then a 1, to form (x, y, 0, 1). 

• All computations are done within OpenGL in 4D 
homogeneous coordinates.



Combinations 

• Linear combinations of vectors and points: 

– The difference of 2 points is a vector: the 

fourth component is 1 – 1 = 0

– The sum of a point and a vector is a point: the 

fourth component is 1 + 0 = 1

– The sum of 2 vectors is a vector: 0 + 0 = 0

– A vector multiplied by a scalar is still a vector: 

a x 0 = 0.

– Linear combinations of vectors are vectors.



Combinations (2)

• The sum of 2 points 
is a point only if the 
points are part of an 
affine combination, 
so that a1∙1 + a2∙ 1 
= 1.  The sum is a 
vector only if a1∙1 + 
a2∙ 1 = 0. We 
require this rule to 
remedy the problem 
shown at right: 



Combinations (3)

• If we form any linear 
combination of two 
points, say E = fP + gR,
when f + g is different 
from 1, a problem arises 
if we translate the origin 
of the coordinate system. 

• Suppose the origin is 
translated by vector u, so 
that P is altered to P + u
and R is translated to R + 
u. 

• If E is a point, it must be 
translated to E’ = E + u.

• But we have E’ = fP + gR 
+ (f + g)u, which is not E
+ u unless f + g = 1.



Point + Vector

• Suppose we add a point A and a vector 

that has been scaled by a factor t: the 

result is a point, P = A + tv.

• Now suppose v = B – A, the difference of 2 

points: P = tB + (1-t)A, an affine 

combination of points.



Linear Interpolation of 2 Points

• P = (1-t)A + tB is a linear interpolation 

(lerp) of 2 points. This is very useful in 

graphics in many applications,

– Px (t) provides an x value that is fraction t of 

the way between Ax and Bx. (Likewise Py, Pz).

float lerp (float a, float b, float t)

{     return a + (b – a) * t;  // return float  }



Tweening and lerp

• One often wants to compute the point P(t) that is 
fraction t of the way along the straight line from point 
A to point B [the tween (for in-between) at t of points 
A and B]. 

• Each component of the resulting point is formed as 
the lerp() of the corresponding components of A and 
B. 

• A procedure Tween (Point2 A, Point2 B, float t) 
implements tweening for points A and B, where we 
have used the new data type Point2 for a 2D point: 

struct Point2

{ float x; float y; };



Tweening and Animation

• Tweening takes 2 polylines and 

interpolates between them (using lerp) to 

make one turn into another (or vice versa).

• We are finding here the point P(t) that is a 

fraction t of the way along the straight line 

(not drawn) from point A to point B.

• To start, it is easiest if you use 2 polylines 

with the same number of lines.



Tweening (2)

• We use polylines A and B, each with n points 
numbered 0, 1, …, n-1.

• We form the points Pi (t) = (1-t)Ai + tBi, for t = 
0.0, 0.1, …, 1.0 (or any other set of t in [0, 1]), 
and draw the polyline for Pi.



Code for Tween

void drawTween(Point2 A[ ], Point2 B[ ], int n, float 
t)

{ // draw the tween at time t between polylines A 
and B

for (int i = 0; i < n; i++)

{ Point2 P;

P = Tween (A[i], B[i], t);

if (i ==0) moveTo(P.x, P.y);

else lineTo(P.x, P.y);

}

}



Tweening (3)

• To allow drawing tweens continuously, use 
the code below with double buffers.

for (t = 0.0, delT = 0.1; ; t += delT;) {

//clear the buffer

drawTween (A, B, n, t);

glutSwapBuffers();

if ((t<=0.0) || (t>=1.0)) delT = -delT;

}



Tween Examples



Uses of Tweening

• In films, artists draw only the key frames of 
an animation sequence (usually the first 
and last).

– Tweening is used to generate the in-between 
frames.

• Preview of Ch. 10: We want a smooth 
curve that passes through or near 3 
points.  We expand ((1-t) + t)2 and write 
P(t) = (1-t)2A + 2t(1-t)B + t2C



Uses of Tweening (2)

– This is called the Bezier curve for points A, B, 

and C.  

– It can be extended to 4 points by expanding 

((1-t) + t)3 and using each term as the 

coefficient of a point.


