
Computer Graphics using OpenGL,

3rd Edition

F. S. Hill, Jr. and S. Kelley

Chapter 4.1-4

Vector Tools for Graphics

S. M. Lea

University of North Carolina at Greensboro

© 2007, Prentice Hall

Introduction

• In computer graphics, we work with objects
defined in a three dimensional world (with 2D
objects and worlds being just special cases).

• All objects to be drawn, and the cameras used to
draw them, have shape, position, and
orientation.

• We must write computer programs that
somehow describe these objects, and describe
how light bounces around illuminating them, so
that the final pixel values on the display can be
computed.

Introduction (2)

• The two fundamental sets of tools that come to

our aid in graphics are vector analysis (Ch. 4)

and transformations (Ch. 5).

• We develop methods to describe various

geometric objects, and we learn how to convert

geometric ideas to numbers.

• This provides a collection of crucial algorithms

that we can use in graphics programs.

Easy Problems for Vectors

• Where is the center of the circle through the 3
points? What image shape appears on the
viewplane, and where? Where does the
reflection of the cube appear on the shiny cone,
and what is the exact shape of the reflection?

Vectors

• Vectors provide easy ways of solving

some tough problems.

• A vector has length and direction, but not

position (relative to a coordinate system).

It can be moved anywhere.

• A point has position but not length and

direction (relative to a coordinate system).

• A scalar has only size (a number).

Basics of Points and Vectors

• All points and vectors are defined relative to

some coordinate system. Shown below are a 2D

coordinate system and a right- and a left-handed

3-D coordinate system.

Left and Right Handedness

• In a 3D system, using your right hand, curl

your fingers around going from the x-axis

to the y-axis. Your thumb is at right angles

to your fingers.

– If your thumb points along the direction of the

z-axis, the system is right handed.

– If your thumb points opposite to the direction

of the z-axis, the system is left handed.

4.2: Review of Vectors

• Vectors are drawn as arrows of a certain length pointing

in a certain direction.

• A vector is a displacement from one point to another.

Shown below are displacements of the stars in the Big

Dipper over the next 50,000 years.

Vectors and Coordinate Systems

• A vector v between points P = (1, 3) and Q = (4, 1), with
components of (3, -2), calculated by subtracting the
coordinates individually (Q – P).

• To "go" from P to Q, we move down by 2 and right by 3.
Since v has no position, the two arrows labeled v are the
same vector. The 3D case is also shown.

Vector Operations

• The difference between 2 points is a

vector: v = Q – P.

• The sum of a point and a vector is a point:

P + v = Q.

• We represent an n-dimensional vector by

an n-tuple of its components, e.g. v = (vx,

vy, vz). (We will usually use 2- or 3-

dimensional vectors: e.g., v = (3, -2)).

Vector Representations

• A vector v = (33, 142.7, 89.1) is a row

vector.

• A vector v = (33, 142.7, 89.1)T is a column

vector.

– It is the same as

1.89

7.142

33

v

Vector Operations (2)

• Vectors have 2
fundamental
operations: addition

of 2 vectors and
multiplication by a
scalar.

• If a and b are
vectors, so is a + b,
and so is sa, where
s is a scalar.

Vector Operations (3)

• Subtracting c from a is equivalent to adding a

and (-c), where –c = (-1)c.

Linear Combinations of Vectors

• v1 ± v2 = (v1x ± v2x, v1y ± v2y, v1z ± v2z)

• sv = (svx, svy, svz)

• A linear combination of the m vectors v1,

v2, …, vm is w = a1v1 + a2v2 + … + amvm.

– Example: 2(3, 4,-1) + 6(-1, 0, 2) forms the

vector (0, 8, 10).

Linear Combinations of Vectors

• The linear combination becomes an affine

combination if a1 + a2 + … + am = 1.

– Example: 3a + 2 b - 4 c is an affine combination of

a, b, and c, but 3 a + b - 4 c is not.

– (1-t) a + (t) b is an affine combination of a and b.

• The affine combination becomes a convex

combination if ai ≥ 0 for 1 ≤ i ≤ m.

– Example: .3a+.7b is a convex combination of a and b,

but 1.8a -.8b is not.

The Set of All Convex

Combinations of 2 or 3 Vectors

• v = (1 – a)v1 + av2, as a varies from 0 to 1, gives

the set of all convex combinations of v1 and v2.

An example is shown below.

Vector Magnitude and Unit Vectors

• The magnitude (length, size) of n-vector w is
written |w|.

• Example: the magnitude of w = (4, -2) is

and that of w = (1, -3, 2) is .

• A unit vector has magnitude |v| = 1.

• The unit vector pointing in the same direction as
vector a is (if |a| ≠0).

• Converting a to is called normalizing vector
a.

w w w wn1

2

2

2 2...

20

14

a

a
a ˆ

â

Vector Magnitude and Unit Vectors

(2)

• At times we refer to a unit vector as a

direction.

• Any vector can be written as its magnitude

times its direction: a = |a| â

Vector Dot Product

• The dot product of n-vectors v and w is

v∙w = v1w1 + v2w2 + … + vnwn

– The dot product is commutative: v∙w = w∙v

– The dot product is distributive: (a ± b)∙c = a∙c

± b∙c

– The dot product is associative over

multiplication by a scalar: (sa)∙b = s(a∙b)

– The dot product of a vector with itself is its

magnitude squared: b∙b = |b|2

Applications: Angle Between 2

Vectors

• b = (|b| cos φb, |b| sin

φb), and c = (|c| cos φc,

|c| sin φc)

• b∙c = |b||c| cos φc cos

φb + |b||c| sin φb sin φc

= |b||c| cos (φc- φb) =

|b||c| cos θ, where θ =

φc- φb is the smaller

angle between b and c:

cos() ˆ b ˆ c

Angle Between 2 Vectors (2)

• The cosine is positive if |θ| < 90o, zero if |θ| =

90o, and negative if θ > 90o.

• Vectors b and c are perpendicular (orthogonal,

normal) if b∙c = 0.

Standard Unit Vectors

• The standard unit vectors in 3D are i = (1,0,0), j
= (0, 1, 0), and k = (0, 0, 1). k always points in
the positive z direction

• In 2D, i = (1,0) and j = (0, 1).

• The unit vectors are orthogonal.

Finding a 2D "Perp" Vector

• If vector a = (ax, ay), then the vector perpendicular to
a in the counterclockwise sense is a┴ = (-ay, ax), and
in the clockwise sense it is -a┴.

• In 3D, any vector in the plane perpendicular to a is a
"perp" vector.

Properties of ┴

• (a ± b)┴ = a┴ ± b┴;

• (sa)┴ = s(a┴);

• (a┴)┴ = -a

• a┴ ∙ b = -b┴ ∙ a = -aybx + axby;

• a┴ ∙ a = a ∙ a┴ = 0;

• |a┴| = |a|;

Orthogonal Projections and

Distance from a Line

• We are given 2 points A and C and a

vector v. The following questions arise:

– How far is C from the line L that passes

through A in direction v?

– If we drop a perpendicular onto L from C,

where does it hit L?

– How do we decompose a vector c = C – A into

a part along L and a part perpendicular to L?

Illustration of Questions

Answering the Questions

• We may write c = Kv + Mv┴. If we take

the dot product of each side with v, we

obtain c∙v = Kv∙v + Mv┴∙v = K|v|2 (why?),

or K = c∙v/|v|2.

• Likewise, taking the dot product with v┴

gives M = c∙v┴/|v|2. (Why not |v┴|2 ?)

• Answers to the original questions: Mv┴,

Kv, and both.

Application of Projection:

Reflections

• A reflection occurs when light hits a shiny

surface (below) or when a billiard ball hits the

wall edge of a table.

Reflections (2)

• When light reflects from a mirror, the angle of reflection

must equal the angle of incidence: θ1 = θ2.

• Vectors and projections allow us to compute the new

direction r, in either two-dimensions or three dimensions.

Reflection (2)

• The illustration shows that e = a – m and r = e –

m = a – 2m and m = [(a∙n)/|n|2]n =

• r = nnaa ˆˆ2

 nna ˆˆ

Vector Cross Product (3D Vectors

Only)

• a x b = (aybz – azby)i + (azbx – axbz)j + (axby

– aybx)k.

• The determinant below also gives the

result:

a b

i j k

ax ay az

bx by bz

Properties of the Cross-Product

• i x j = k; j x k = i; k x i = j

• a x b = - b x a; a x (b ± c) = a x b ± a x c;
(sa) x b = s(a x b)

• a x (b x c) ≠ (a x b) x c – for example, a =
(ax, ay, 0), b = (bx, by, 0), c = (0, 0, cz)

• c = a x b is perpendicular to a and to b.
The direction of c is given by a right/left
hand rule in a right/left-handed coordinate
system.

Properties (2)

• a ∙ (a x b) = 0

• a x b = |a||b| sin θ, where θ is the smaller

angle between a and b.

• a x b is also the area of the parallelogram

formed by a and b.

• a x b = 0 if a and b point in the same or

opposite directions, or if one or both has

length 0.

Geometric Interpretation of the

Cross Product

Application: Finding the Normal to

a Plane

• Given any 3 non-collinear points A, B, and C in a

plane, we can find a normal to the plane:

• a = B – A, b = C – A, n = a x b. The normal on the

other side of the plane is –n.

Convexity of Polygons

• Traversing around a
convex polygon from one
edge to the next, either a
left turn or a right turn is
taken, and they all must be
the same kind of turn (all
left or all right).

• An edge vector points
along the edge of the
polygon in the direction of
travel.

Convexity of Polygons (2)

• Take the cross

product of each edge

vector with the next

forward edge vector.

• If all the cross

products point into (or

all point out of) the

plane, the polygon is

convex; otherwise it is

not.

Representations of Key Geometric

Objects

• Lines and planes are essential to graphics,

and we must learn how to represent them

– i.e., how to find an equation or function

that distinguishes points on the line or

plane from points off the line or plane.

• It turns out that this representation is

easiest if we represent vectors and points

using 4 coordinates rather than 3.

Coordinate Systems and Frames

• A vector or point has coordinates in an

underlying coordinate system.

• In graphics, we may have multiple

coordinate systems, with origins located

anywhere in space.

• We define a coordinate frame as a single

point (the origin, O) with 3 mutually

perpendicular unit vectors: a, b, and c.

Coordinate Frames (2)

• A vector v is represented by (v1, v2, v3) such that

v = v1a + v2b + v3c.

• A point P – O = p1a +p2b + p3c.

Homogeneous Coordinates

• It is useful to represent both points and

vectors by the same set of underlying

objects, (a, b, c, O).

• A vector has no position, so we represent

it as (a, b, c, O)(v1, v2, v3,0)T.

• A point has an origin (O), so we represent

it by (a, b, c, O)(v1, v2, v3,1)T.

Changing to and from

Homogeneous Coordinates

• To: if the object is a vector, add a 0 as the 4th

coordinate; if it is a point, add a 1.

• From: simply remove the 4th coordinate.

• OpenGL uses 4D homogeneous coordinates for
all its vertices.
– If you send it a 3-tuple in the form (x, y, z), it converts

it immediately to (x, y, z, 1).

– If you send it a 2D point (x, y), it first appends a 0 for
the z-component and then a 1, to form (x, y, 0, 1).

• All computations are done within OpenGL in 4D
homogeneous coordinates.

Combinations

• Linear combinations of vectors and points:

– The difference of 2 points is a vector: the

fourth component is 1 – 1 = 0

– The sum of a point and a vector is a point: the

fourth component is 1 + 0 = 1

– The sum of 2 vectors is a vector: 0 + 0 = 0

– A vector multiplied by a scalar is still a vector:

a x 0 = 0.

– Linear combinations of vectors are vectors.

Combinations (2)

• The sum of 2 points
is a point only if the
points are part of an
affine combination,
so that a1∙1 + a2∙ 1
= 1. The sum is a
vector only if a1∙1 +
a2∙ 1 = 0. We
require this rule to
remedy the problem
shown at right:

Combinations (3)

• If we form any linear
combination of two
points, say E = fP + gR,
when f + g is different
from 1, a problem arises
if we translate the origin
of the coordinate system.

• Suppose the origin is
translated by vector u, so
that P is altered to P + u
and R is translated to R +
u.

• If E is a point, it must be
translated to E’ = E + u.

• But we have E’ = fP + gR
+ (f + g)u, which is not E
+ u unless f + g = 1.

Point + Vector

• Suppose we add a point A and a vector

that has been scaled by a factor t: the

result is a point, P = A + tv.

• Now suppose v = B – A, the difference of 2

points: P = tB + (1-t)A, an affine

combination of points.

Linear Interpolation of 2 Points

• P = (1-t)A + tB is a linear interpolation

(lerp) of 2 points. This is very useful in

graphics in many applications,

– Px (t) provides an x value that is fraction t of

the way between Ax and Bx. (Likewise Py, Pz).

float lerp (float a, float b, float t)

{ return a + (b – a) * t; // return float }

Tweening and lerp

• One often wants to compute the point P(t) that is
fraction t of the way along the straight line from point
A to point B [the tween (for in-between) at t of points
A and B].

• Each component of the resulting point is formed as
the lerp() of the corresponding components of A and
B.

• A procedure Tween (Point2 A, Point2 B, float t)
implements tweening for points A and B, where we
have used the new data type Point2 for a 2D point:

struct Point2

{ float x; float y; };

Tweening and Animation

• Tweening takes 2 polylines and

interpolates between them (using lerp) to

make one turn into another (or vice versa).

• We are finding here the point P(t) that is a

fraction t of the way along the straight line

(not drawn) from point A to point B.

• To start, it is easiest if you use 2 polylines

with the same number of lines.

Tweening (2)

• We use polylines A and B, each with n points
numbered 0, 1, …, n-1.

• We form the points Pi (t) = (1-t)Ai + tBi, for t =
0.0, 0.1, …, 1.0 (or any other set of t in [0, 1]),
and draw the polyline for Pi.

Code for Tween

void drawTween(Point2 A[], Point2 B[], int n, float
t)

{ // draw the tween at time t between polylines A
and B

for (int i = 0; i < n; i++)

{ Point2 P;

P = Tween (A[i], B[i], t);

if (i ==0) moveTo(P.x, P.y);

else lineTo(P.x, P.y);

}

}

Tweening (3)

• To allow drawing tweens continuously, use
the code below with double buffers.

for (t = 0.0, delT = 0.1; ; t += delT;) {

//clear the buffer

drawTween (A, B, n, t);

glutSwapBuffers();

if ((t<=0.0) || (t>=1.0)) delT = -delT;

}

Tween Examples

Uses of Tweening

• In films, artists draw only the key frames of
an animation sequence (usually the first
and last).

– Tweening is used to generate the in-between
frames.

• Preview of Ch. 10: We want a smooth
curve that passes through or near 3
points. We expand ((1-t) + t)2 and write
P(t) = (1-t)2A + 2t(1-t)B + t2C

Uses of Tweening (2)

– This is called the Bezier curve for points A, B,

and C.

– It can be extended to 4 points by expanding

((1-t) + t)3 and using each term as the

coefficient of a point.

